OpenBMB
Big Models for Everyone
GitHub
Top
基座上新:MiniCPM 4.1 将「高效深思考」引入端侧
今天,我们发布新版本的面壁小钢炮 MiniCPM 4.1 基座模型。在 MiniCPM 4.0 的基础上,MiniCPM 4.1 新增 8B 参数的行业首个原生稀疏架构深思考模型,同级 SOTA 表现带来超快、超准的深思考能力,真正让端侧设
2025年10月29 16:00
查看详情
多模态新旗舰MiniCPM-V4.5:8B 性能超越 72B,高刷视频理解又准又快
今天,我们正式开源 8B 参数的面壁小钢炮 MiniCPM-V 4.5 多模态旗舰模型,成为行业首个具备“高刷”视频理解能力的多模态模型,看得准、看得快,看得长!高刷视频理解、长视频理解、OCR、文档解析能力同级 SOTA,且性能超过 Qw
2025年10月29 15:53
查看详情
MiniCPM-V4.0开源,多模态能力进化,手机可用,还有最全CookBook!
今天,面壁小钢炮新一代多模态模型 MiniCPM-V 4.0 正式开源。依靠 4B 参数,取得 在 OpenCompass、OCRBench、MathVista 等多个榜单上取得了同级 SOTA 成绩,且 实现了在手机上稳定、丝滑运行。此外
2025年10月29 15:40
查看详情
BM Architecture Diagram
BM Data BM Data BM Train Open Prompt Delta Center Open Delta BM Train Open Prompt BM Inf BM Inf BM Inf BM Cook BM Cook
BMTrain
The “engine” for big model training. BMTrain performs efficient pre-training and tuning for big models.
Compared with toolkit such as DeepSpeed, BMTrain can save 90% on cost in the training process.
Learn more
BMTrain performs amazingly compared to popular frameworks
BMCook
The toolkit for big model “slimming”. BMCook performs efficient compression for big models to improve operating efficiency.
Through the combination of algorithms such as quantization, pruning, distillation, and MoEfication, 90%+ effects of the original model can be maintained, and model inference can be accelerated by 10 times.
Learn more
Combination in Any Way
BMInf
Perform big model inference on a thousand-yuan GPU. BMInf performs low-cost and high-efficiency inference for big models,which can perform big model inference with more than 10 billion parameters on a single thousand-yuan GPU (GTX 1060).
Learn more
10B Model Decoding Speed
BMInf
PyTorch
OpenPrompt
A “sharp knife” for big model prompt learning. OpenPrompt provides a prompt learning template language with a unified interface. Its compositionality and modularity allow you to easily deploy prompt learning algorithms to run big models.
Learn more
Architecture
OpenDelta
Tiny parameters leverage big models. OpenDelta performs parameter-efficient tuning for big models. By only updating very few parameters (less than 5%), the algorithms can achieve the same effect with full-parameter fine-tuning.
Learn more
Tool Collaboration
ModelCenter
Big Model Warehouse.ModelCenter implements pre-trained language models (PLMs) based on BMTrain backend. It supports Efficient, Low-Resource, Extendable model usage and distributed training.
Learn more
Supported Models
Our Customers